f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))
↳ QTRS
↳ DependencyPairsProof
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))
G1(x) -> F1(g1(x))
F1(g1(a)) -> G1(b)
G1(x) -> G1(x)
F1(g1(a)) -> F1(s1(g1(b)))
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
G1(x) -> F1(g1(x))
F1(g1(a)) -> G1(b)
G1(x) -> G1(x)
F1(g1(a)) -> F1(s1(g1(b)))
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
G1(x) -> F1(g1(x))
F1(g1(a)) -> G1(b)
G1(x) -> G1(x)
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G1(x) -> F1(g1(x))
Used ordering: Polynomial Order [17,21] with Interpretation:
F1(g1(a)) -> G1(b)
G1(x) -> G1(x)
POL( G1(x1) ) = x1 + 1
POL( F1(x1) ) = max{0, x1 - 3}
POL( g1(x1) ) = x1 + 1
POL( a ) = 3
POL( b ) = 0
POL( f1(x1) ) = 0
g1(x) -> f1(g1(x))
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
F1(g1(a)) -> G1(b)
G1(x) -> G1(x)
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
G1(x) -> G1(x)
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))